If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-20x-13=0
a = 5; b = -20; c = -13;
Δ = b2-4ac
Δ = -202-4·5·(-13)
Δ = 660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{660}=\sqrt{4*165}=\sqrt{4}*\sqrt{165}=2\sqrt{165}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{165}}{2*5}=\frac{20-2\sqrt{165}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{165}}{2*5}=\frac{20+2\sqrt{165}}{10} $
| -2(x-1)-7(1+x)=13 | | -121-2x+9x=110 | | 9x-90-x=190 | | -25+8n=3(5+6n) | | -3(3b+2)=57 | | 7x+40=3x+112 | | -10x-47+5x=78 | | 2r+S=11r-S=2 | | |x+4|=2x+1 | | 180=4x+5 | | 75=-8(6n-4)+5(3+4n) | | 6.5a=3.25 | | 4x+15=2x+40 | | 2(x)-7/3=1/4 | | (2x+5)(x-1)=6x | | 2r+S=11,r-S=2 | | 28.1+0.1p=0.9p+5.1 | | 2(4x+4)-8=4+2x | | 5+x-3=12 | | (x+2)*x=575 | | 7x-4=2(x+6) | | 45=(3x+3) | | 9r-4=500 | | 5x-3x+2=x+2 | | 5/6x-2=-2/3×+1 | | 4.9n-6=5.4n+9.5 | | 3(x-4)-(5x-2)=-20 | | 4(x)+3=19 | | 2x+9=4(x-2)-2x | | (X^2+3x-28)(2x-3)=0 | | 8e+15+3e=10 | | 6x+5(2)=-16 |